Hunters Hill High School **Extension 2, Mathematics**

Trial Examination, 2015

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- The marks for each question are shown on the paper
- Show all necessary working in questions 11-16

Total Marks: 100

Section I Page 3 – 7

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 8 – 14 90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I MULTIPLE CHOICE: Write the correct alternative on your writing paper.

1 The diagram shows the graph of the function y = f(x).

Which of the following is the graph of $y = f(x)^2$?

(B)

(D)

2 Consider the hyperbola with the equation $\frac{x^2}{144} - \frac{y^2}{25} = 1$.

What are the equations of the directrices?

(A)
$$x = \pm \frac{13}{144}$$

(B)
$$x = \pm \frac{13}{25}$$

(C)
$$x = \pm \frac{25}{13}$$

(D)
$$x = \pm \frac{144}{13}$$

3 Consider the Argand diagram below.

Which inequality could define the shaded area?

(A)
$$|z-i| \le 2$$
 and $0 \le \arg(z-1) \le \frac{3\pi}{4}$ (B) $|z+i| \le 2$ and $0 \le \arg(z-1) \le \frac{3\pi}{4}$

(C)
$$|z-i| \le 2$$
 and $0 \le \arg(z-1) \le \frac{\pi}{4}$ (D) $|z+i| \le 2$ and $0 \le \arg(z-1) \le \frac{\pi}{4}$

- 4 Which of the following is an expression for $\int \frac{2}{x^2 + 4x + 13} dx$?
- (A) $\frac{1}{3} \tan^{-1} \frac{(x+2)}{3} + c$
- (B) $\frac{2}{3} \tan^{-1} \frac{(x+2)}{3} + c$
- (C) $\frac{1}{9} \tan^{-1} \frac{(x+2)}{9} + c$
- (D) $\frac{2}{9} \tan^{-1} \frac{(x+2)}{9} + c$
- The point *P* lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0. The tangent at *P* meets the tangents at the ends of the major axis at *R* and *T*.

What is the equation of the tangent at *P*?

(A)
$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$$

(B)
$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

(C)
$$\frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$$

(D)
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

The region enclosed by the ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the y axis to form a solid.

What is the correct expression for volume of this solid using the method of slicing?

(A)
$$V = \int_{-2}^{2} \pi \sqrt{1 - y^2} dy$$

(B)
$$V = \int_{-2}^{2} 2\pi \sqrt{1 - y^2} dy$$

(C)
$$V = \int_{-2}^{2} \pi \sqrt{4 - y^2} dy$$

(D)
$$V = \int_{-2}^{2} 2\pi \sqrt{4 - y^2} dy$$

7 The polynomial equation $x^3 - 3x^2 - x + 2 = 0$ has roots α , β and γ . Which of the following polynomial equations have roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$?

(A)
$$x^3 - x^2 - 3x + 1 = 0$$

(B)
$$x^3 - 2x^2 - 3x + 1 = 0$$

(C)
$$2x^3 - x^2 - 3x + 1 = 0$$

(D)
$$2x^3 - 2x^2 - 3x + 1 = 0$$

8 What is the derivative of $\sin^{-1} x - \sqrt{1 - x^2}$?

(A)
$$\frac{\sqrt{1+x}}{\sqrt{1-x}}$$

(B)
$$\frac{\sqrt{1+x}}{1-x}$$

(C)
$$\frac{1+x}{\sqrt{1-x}}$$

$$(D) \qquad \frac{1+x}{1-x}$$

- What are the values of real numbers p and q such that 1-i is a root of the equation $z^3 + pz + q = 0$?
 - (A) p = -2 and q = -4
 - (B) p = -2 and q = 4
 - (C) p = 2 and q = 4
 - (D) p = 2 and q = 4
- 10 A particle of mass *m* is moving in a straight line under the action of a force.

$$F = \frac{m}{r^3}(6-10x)$$

What of the following is an expression for its velocity in any position, if the particle starts from rest at x = 1?

(A)
$$v = \pm \frac{1}{x} \sqrt{(-3 + 10x - 7x^2)}$$

(B)
$$v = \pm x\sqrt{(-3+10x-7x^2)}$$

(C)
$$v = \pm \frac{1}{x} \sqrt{2(-3+10x-7x^2)}$$

(D)
$$v = \pm x\sqrt{2(-3+10x-7x^2)}$$

Total Marks - 90 Section II Attempt Questions 11-16 All Questions are of equal value

Marks

Question 11 (15 marks) Begin a NEW sheet of paper.

(a) By using the method of partial fractions, show that

4

$$\int \frac{dx}{x^2 - 1} = \ln \sqrt{\frac{x - 1}{x + 1}} + c$$

(b) Use the substitution $u = \cos x$ to evaluate

4

$$\int_0^1 \sqrt{1-x^2} \ dx$$

(c) If $I = \int e^x \sin x \, dx$

Find *I* using the method of integration by parts.

4

(d) Evaluate

$$\int_{0}^{\frac{\pi}{2}} \cos x \sin^3 x \, dx$$

3

Question 12 (15 marks) Begin a NEW sheet of paper.

Marks

1

1

- (a) Given A = 3 4i and $B = \sqrt{3} + i$.
 - (i) Find AB in x + iy form
 - (ii) Find $\frac{A}{B}$ in x + iy form
 - (iii) Find \sqrt{A} in x+iy form
 - (iv) Find B in modulus- argument form 2
 - (v) Hence find B^4 in x+iy form
- (b) On separate Argand diagrams sketch the following loc
 - (i) $2 \ge |z| \ge 1$ 1 $3\pi \qquad \pi$ 1
 - $\frac{3\pi}{4} > \arg z > \frac{\pi}{4}$
 - (iii) $3 \ge \operatorname{Re} Z \ge 0$ and $3 \ge \operatorname{Im} Z \ge 1$
- (c) On the Argand diagram shown OABC is a rectangle with the length OA being twice OC. OC represents the complex number x+iy. Find the complex number represented by
 - (i) OA y
 - (ii) OB A
 - (iii) BC C(x, y)

Question 13 (15 marks) Begin a NEW sheet of paper.

Marks

4

3

2

3

(a) For the curve with equation $x^2 + 3xy - y^2 = 13$, determine the gradient of the tangent at the point (2, 3) on the curve.

(b)

The diagram above shows a solid which has the circle $x^2 + y^2 = 16$ as its base. The cross-section perpendicular to the x axis is an equilateral triangle.

- (i) Show that the cross-sectional area of the equilateral triangle is given by $A(x) = \sqrt{3}(16 x^2)$
- (ii) Calculate the volume of the solid. 3
- (c) Shown are two circles centres *H* and *K* which touch at *M*. *PQ* and *RM* are common tangents.

COPY DIAGRAM

- (i) Show that quadrilaterals *HPRM* and *MRQK* are cyclic.
- (ii) Prove that triangles *PRM* and *MKQ* are similar.

Question 14 (15 marks) Begin a NEW sheet of paper.

Marks

(a) The equation $P(x) = x^3 + 3x^2 - 24x + k = 0$ has a double root. Find the possible values of k.

2

- (b) The roots of $x^3 + 3px + q = 0$ are α, β and γ , (none of which are equal to 0).
- <u>)</u>
- (i) Find the monic equation with roots $\frac{\beta \gamma}{\alpha}$, $\frac{\alpha \gamma}{\beta}$ and $\frac{\alpha \beta}{\gamma}$, giving the coefficients in terms of p and q.
- 2

(ii) Deduce that if $\gamma = \alpha \beta$ then $(3p-q)^2 + q = 0$

4

(c) The polynomial P(x) leaves a remainder of 9 when divided by (x-2) and a remainder of 4 when divided by (x-3). Find the remainder when P(x) is divided by (x-2)(x-3).

3

(d) Solve $Z^5 = 1$ over the complex field giving your answers in modulus-argument form.

2

(ii) Hence write $Z^5 - 1$ as the product of linear and quadratic factors.

2

Question 15 (15 marks) Begin a NEW sheet of paper.

Marks

- (a) A mass of 1kg is falling under gravity (g) through a medium in which the resistance to the motion is proportional to the square of the velocity. (k is the constant of proportionality)
 - Draw a sketch showing all forces acting. (i)

1

(ii) Write an equation for the acceleration of this mass.

1

Show that the mass reaches a terminal velocity (iii)

1

given by
$$v = \sqrt{\frac{g}{k}}$$
.

4

a velocity
$$v$$
 m/s is given by $x = \frac{1}{2k} \ln \left(\frac{g}{g - kv^2} \right)$

(b) Show that the recurrence (reduction) formula for (i)

4

$$I_{n} = \int \sec^{n} x dx$$
is $I_{n} = \frac{1}{n-1} \tan x \sec^{n-2} x + \frac{n-2}{n-1} I_{n-2}$

(ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \sec^4 x \, dx$$

2

(c) A cubic equation in z has all real coefficients. If two of the roots are 3 and 2+i determine the equation.

2

Question 16 (15 marks) Begin a NEW sheet of paper.

Marks

3

2

(a)

The sketch shows the hyperbola $\frac{x^2 \downarrow}{a^2} - \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = a^2$

with $a,b \ge 0$. T lies on the circle where $\angle TOX = \theta$ and $0 \le \theta \le \frac{\pi}{2}$. The tangent at T meets OX at M and MP is perpendicular to OX with P on the hyperbola. Coordinates of T are $(a\cos\theta, a\sin\theta)$

- (i) Find the equation of the tangent TM and hence the coordinates of M.
- (ii) Hence show that the coordinates of P are $(a \sec \theta, b \tan \theta)$
- (iii) If $Q(a \sec \beta, b \tan \beta)$ is another point on the hyperbola, where $\theta + \beta = \frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the equation of PQ is $ay = b(\cos \theta + \sin \theta)x ab$.
- (iv) Every such chord PQ passes through a fixed point, find its coordinates.
- (v) Show that as θ approaches $\frac{\pi}{2}$, PQ approaches a line parallel to an asymptote.

Question 7 continues on page 9.

Question 16 continued.

Marks

1

3

- (b) (i) By letting $Z = \cos \theta + i \sin \theta$ show that $Z^n + \frac{1}{Z_n} = 2 \cos n\theta.$
 - (ii) Hence express $\cos^4 \theta$ in terms of $\cos n\theta$

End of Question 16

End of Examination

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

HHHS

2015 TRIAL HSC EXAMINATION

Mathematics

Extension 2

SOLUTIONS

Section	Section I Trial HSC Examination- Mathematics 2015 Extension 2	
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Mark: D
2	$b^2 = a^2(e^2 - 1)$ $a^2 = 144$ and $b^2 = 25$. $25 = 144(e^2 - 1)$ $a = 12$ $b = 5$ $(e^2 - 1) = \frac{25}{144}$ or $e^2 = \frac{169}{144}$ or $e = \frac{13}{12}$ Equation of the directrices are $x = \pm \frac{a}{e} = \pm \frac{144}{13}$.	1 Mark: D
3	$ z-i \le 2$ represents a region with a centre is $(0, 1)$ and radius is less than or equal to 2. $0 \le \arg(z-1) \le \frac{3\pi}{4}$ represents a region between angle 0 and $\frac{3\pi}{4}$ whose vertex is $(1, 0)$, not including the vertex $ z-i \le 2$ and $0 \le \arg(z-1) \le \frac{3\pi}{4}$	1 Mark: A
4	$\int \frac{2}{x^2 + 4x + 13} dx = 2 \int \frac{dx}{(x+2)^2 + 3^2}$ $= \frac{2}{3} \tan^{-1} \frac{(x+2)}{3} + c$	1 Mark: B

	To find the equation of tangent through <i>P</i>	
	$x = a\cos\theta \qquad \qquad y = b\sin\theta$	
	$\frac{dx}{d\theta} = -a\sin\theta \qquad \qquad \frac{dy}{d\theta} = b\cos\theta$	
	$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$	
	$=b\cos\theta\times\frac{1}{-a\sin\theta}=\frac{-b\cos\theta}{a\sin\theta}$	
5	Equation of the tangent	1 Mark: D
	$y - y_1 = m(x - x_1)$	
	$y - b\sin\theta = \frac{-b\cos\theta}{a\sin\theta}(x - a\cos\theta)$	
	$ay\sin\theta - ab\sin^2\theta = -bx\cos\theta + ab\cos^2\theta$	
	$bx\cos\theta + ay\sin\theta = ab(\sin^2\theta + \cos^2\theta)$	
	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$	
	The base is an annulus.	
	$A = \pi (r_2^2 - r_1^2)$	
	$=\pi\left(r_2+r_1\right)\!\left(r_2-r_1\right)$	
	$(r-1)^{2} + \frac{y^{2}}{4} = 1$ $r^{2} - 2r + \frac{y^{2}}{4} = 0$	
	$r^2 - 2r + \frac{y^2}{4} = 0$	
6	$r = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times \frac{y^2}{4}}}{2}$	1 Mark: D
	$r = 1 \pm \sqrt{1 - \frac{y^2}{4}}$	
	Therefore $r_2 + r_1 = 2$ and $r_2 - r_1 = 2\sqrt{1 - \frac{y^2}{4}}$	
	$V = \lim_{\delta y \to 0} \sum_{y=-2}^{2} \pi \times 2 \times 2\sqrt{1 - \frac{y^{2}}{4}} \delta y$	
	$= \int_{-2}^{2} 2\pi \sqrt{4 - y^2} dy$	

7	$x = \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ $\alpha = \frac{1}{x} \text{ satisfies } x^3 - 3x^2 - x + 2 = 0$ $\left(\frac{1}{x}\right)^3 - 3\left(\frac{1}{x}\right)^2 - \frac{1}{x} + 2 = 0$ $1 - 3x - x^2 + 2x^3 = 0$ $2x^3 - x^2 - 3x + 1 = 0$	1 Mark: C
8	$y = \sin^{-1} x - \sqrt{1 - x^{2}}$ $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^{2}}} - \frac{1}{2} (1 - x^{2})^{-\frac{1}{2}} \times -2x$ $= \frac{1}{\sqrt{1 - x^{2}}} + \frac{x}{\sqrt{1 - x^{2}}}$ $= \frac{1 + x}{\sqrt{1 - x^{2}}}$ $= \frac{1 + x}{\sqrt{(1 + x)(1 - x)}}$ $= \frac{\sqrt{1 + x}}{\sqrt{1 - x}}$ Result defined for $-1 \le x \le 1$	1 Mark: A
9	Using the conjugate root theorem $1+i$ and $1-i$ are both roots of the equation $z^3 + pz + q = 0$. $(1+i) + (1-i) + \alpha = 0 \text{(sum of the roots)}$ $\alpha = -2$ $(1+i) \times (1-i) \times -2 = -q \text{(product of the roots)}$ $(1+1) \times -2 = -q$ $q = 4$ $(1+i)(1-i) + (1-i) - 2 + (1+i) - 2 = p$ $p = -2$ Therefore $p = -2$ and $q = 4$	1 Mark: B

10	$F = \frac{m}{x^3}(6-10x)$ $ma = \frac{m}{x^3}(6-10x)$ $v\frac{dv}{dx} = \frac{6}{x^3} - \frac{10}{x^2}$ $\int vdv = \int (\frac{6}{x^3} - \frac{10}{x^2})dx$ $\frac{1}{2}v^2 = (\frac{6x^{-2}}{-2} - \frac{10x^{-1}}{-1}) + c$ $\frac{1}{2}v^2 = (\frac{-3}{x^2} + \frac{10}{x}) + c$ When $v = 0$ and $x = 1$ $\frac{1}{2}0^2 = (\frac{-3}{1^2} + \frac{10}{1}) + c$ $c = -7$ $\frac{1}{2}v^2 = (\frac{-3}{x^2} + \frac{10}{x}) - 7$ $v^2 = (\frac{-6}{x^2} + \frac{20}{x}) - 14$ $= \frac{-6 + 20x - 14x^2}{x^2}$ $v = +\frac{1}{x^2} \sqrt{2(3+10x - 7x^2)}$	1 Mark: C
	$v = \pm \frac{1}{x} \sqrt{2(-3 + 10x - 7x^2)}$	

Question 11 Trial HSC Examination- Mathematics Extension 2		2015	
Part	Solution	Marks	Comment
(a)	Let $\frac{A}{x+1} + \frac{B}{x-1} = \frac{1}{x^2 - 1}$	1	
	$\therefore A(x-1) + B(x+1) = 1$		
	If $x = 1$ $2B = 1$		
	$B = \frac{1}{2}$ If $x = -1$ $2A = -1$		Any method to find A and B
	$A = -\frac{1}{2}$	1	
	$\frac{dx}{x^2 - 1} = \frac{1}{2} \int \frac{1}{x - 1} - \frac{1}{x + 1} dx$	1	
	$\therefore \int = \frac{1}{2} \left[\ln(x-1) - \ln(x+1) \right] + C$		No mark for C
	$= \frac{1}{2} \ln \left(\frac{x-1}{x+1} \right) + C$	1	
	$= \ln \sqrt{\frac{x-1}{x+1}} + c$		Total = 4

Question 11		Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution	Diversion 2	Marks	Comment
(b)	Let $x = dx = -s$	When $x = 1$ $\theta = 0$ $\sin \theta d\theta$ $x = 0$ $\theta = \frac{\pi}{2}$	1	Can use alternate methods ie $x = \sin \theta$
	_	$\overline{1-x^2} dx = \int_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^2\theta} \left(-\sin\theta d\theta\right)$		
	2	$\sin^2 \theta d\theta$	1	
	2	$(\cos 2\theta - 1)d\theta$		
	$=\frac{1}{2}\left[\frac{1}{2}\right]$	$\sin 2\theta - \theta \bigg]_{\frac{\pi}{2}}^0$	1	
	$=\frac{1}{2}\bigg[\bigg(0$	$\left(0\right)-\left(0-\frac{\pi}{2}\right)$		
	$=\frac{\pi}{4}$		1	Total = 4
(c)	$I = \int e^{-t}$	$\sin x dx$		
	$=e^x \sin$	$\int e^x \cos x dx$	1	
	$=e^x \sin x$	$\int dx - (e^x \cos x - \int e^x [-\sin x] dx)$	1	
		$1x - e^x \cos x - I$	1	
		$\frac{1}{2}(\sin x - \cos x) + C$	1	
	$\therefore I = \frac{e}{2}$	$\frac{1}{2}(\sin x - \cos x) + C$	1	Total = 4
	<u> </u>		<u> </u>	

Questio	on 11	Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution		Marks	Comment
(d)	_	$x\sin^3 x dx = \left[\frac{1}{4}\sin^4 x\right]_0^{\frac{\pi}{2}}$ $n^4 \left(\frac{\pi}{2}\right) - \sin^4(0)$ -0	1	May be done by a substitution of $u = \sin x$ $du = \cos x dx$
	$=\frac{1}{4}$		1	Total = 3

Question 12 Trial HSC Examination- Mathematics Extension 2 2015						
Part	Solution	Marks	Comment			
(a) (i)	$AB = (3-4i)(\sqrt{3}+i)$					
	$= 3\sqrt{3} + 4 + \left(3 - 4\sqrt{3}\right)i$	1				
(ii)	$\frac{A}{B} = \frac{\left(3 - 4i\right)}{\left(\sqrt{3} + i\right)} \times \frac{\left(\sqrt{3} - i\right)}{\left(\sqrt{3} - i\right)}$					
	$= \frac{3\sqrt{3} - 4}{4} + \frac{\left(-4\sqrt{3} - 3\right)i}{4}$	1				
(iii)	$x + iy = \sqrt{3 - 4i}(x + yreal)$					
	$\therefore x^2 - y^2 + 2xyi = 3 - 4i$					
	$\therefore x^2 - y^2 = 3(\alpha)$					
	$2xy = -4(\beta)$	1				
	Squaring $x^4 - 2x^2y^2 + y^4 = 9,4x^2y^2 = 16$		Other methods			
	$x^4 + 2x^2y^2 + y^4 = 25$		okay			
	$(x^2 + y^2)^2 = 25$					
	$x^2 + y^2 = 5(\gamma)$	1				
	Adding $(\alpha + \gamma)2x^2 = 8$					
	$x = \pm 2$					
	$\therefore y = \mp 1$					
	$\therefore \sqrt{A} = \pm (2 - i)$	1	Total = 3			
(iv)	$B = \sqrt{3} + i$					
	$=2(\frac{\sqrt{3}}{2}+\frac{1}{2}i)$					
	$ B = 2 \qquad ArgB = \frac{\pi}{6}$ $= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$	1 for mod				
	$=2\bigg(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\bigg)$	1 for arg				
			Total = 2			

Questic	Question 12 Trial HSC Examination- Mathematics Extension 2 2015				
Part	Solution		Marks	Comment	
(v)	$B^4 = 2^4 (c$	$\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ $\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ $\frac{3i}{3}$			
	$=16(\cos^{2} - 8 + 8\sqrt{3})$	$\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$	1		
(b) (i)					
(")	-3	3 ×	1	D.w. Him.	
(ii)	3 2 .1		1	Dotted lines	
(iii)	₹ <	y 3 2 2 3 x -1	2		
(c) (i)	OA = 2(-	(y+ix)	1		
(ii)	OB = OA				
	=-2y+2				
)+(2x+y)i	1		
(iii)	BC = -OA				
	=2y-2x	i	1		

Ques	Question 13 Trial HSC Examination- Mathematics Extension 2 201:			
Part	Solution	Marks	Comment	
(a)	$x^{2} + 3xy - y^{2} = 13$ $2x + 3y + 3x \cdot \frac{dy}{dx} - 2y \cdot \frac{dy}{dx} = 0$ $\frac{dy}{dx}(3x - 2y) = -(2x + 3y)$	2		
	$\frac{dy}{dx} = \frac{-(2x+3y)}{(3x-2y)}$ $\therefore at (2,3) \qquad \frac{dy}{dx} = -\frac{(4+9)}{6-6}$ $\therefore \text{ Gradient infinite}$ $\therefore \text{ Tangent is vertical}$	2	Total = 4	

(b)			
(i)	$a - b - 2y$ and $\theta - 60^{\circ}$		
	$Area = \frac{1}{2}a b \sin C$		
	4		
	$Area = \frac{1}{2} \times 2y \times 2y \times \sin 60^{\circ}$		
	$Arsa = \frac{1}{2} \times 4 \ y^2 \times \frac{\sqrt{3}}{2}$		
	$Area = \sqrt{3} y^2$		
	$Area = \sqrt{3} \ (16 - x^2)$		
		1	
		1	
		1	Total = 3

(::)			
(ii)	$V = \lim_{\delta x \to 0} \sum_{x=-4}^{4} \sqrt{3} (16 - x^2) \delta x$	1	
	$V = \int_{-4}^{4} \sqrt{3}(16 - x^2) dx$		
	$V = 2\sqrt{3} \int_{0}^{4} (16 - x^{2}) dx$	1	
	$V = 2\sqrt{3} \left[16x - \frac{x^{3}}{3} \right]_{0}^{4}$ $V = \frac{128\sqrt{3}}{3} units^{8}$		
	$V = \frac{128 \sqrt{8}}{3} units^{8}$	1	
			Total = 3

(c) (i)	To HDDM		
	In HPRM		
	$\angle HPR = \angle RMH = 90^{\circ}$ (Angle between radius and tangent)	1	
	∴ HPRM is a cyclic quadrilateral	1	
	(Opposite angles supplementary)		Total = 2
	Similarly for MRQK		
(ii)	Join PM and QM .		
	in ΔPRM and MQK		
	$\angle PRM = \angle MKQ$ (Exterior angle of cyclic quad $MRQK$)	1	
	PR = RM (Tangent from external point)	1	
	KM = KQ(radii)		
	∴ Triangle isoseles.		
	$\therefore \angle RPM = \angle RMP = \angle KMQ$		
	$\therefore \Delta PRM /// \Delta MQK$ (Equiangular)	1	Total = 2

Ques	Question 14 Trial HSC Examination- Mathematics Extension 2		
Part	Solution	Marks	Comment
(a)	$P(x) = x^{3} + 3x^{2} - 24x + k$ $P^{t}(x) = 3x^{2} + 6x - 24$ $P^{t}(x) - 3(x^{2} + 2x - 6)$ $P^{t}(x) = 3(x + 4)(x - 2)$ Therefore $P(-4) = 0 \text{ and } P(2) = 0$ So $k = -80,28$	1 1	Total = 2
(b) (i)	From $x^3 + 3px + q = 0$ $\alpha + \beta + \gamma = 0, \alpha\beta + \alpha + \beta\gamma + = 3p \alpha\beta\gamma = -q$ $\therefore \frac{\beta\gamma}{\alpha} + \frac{\alpha\gamma}{\beta} + \frac{\alpha\beta}{\gamma} = \frac{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}{\alpha\beta\gamma}$ $= \frac{(\beta\gamma + \alpha\gamma + \alpha\beta)^2 - 2(\alpha\beta\gamma^2 + \alpha\beta^2\gamma + \alpha^2\beta\gamma)}{\alpha\beta\gamma}$ $= \frac{(\beta\gamma + \alpha\gamma + \alpha\beta)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)}{\alpha\beta\gamma}$ $= \frac{(3p)^2 + 2q(0)}{-q} = -\frac{9p^2}{q}$	1	
	$\frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \gamma}{\beta} + \frac{\alpha \gamma}{\beta} \cdot \frac{\alpha \beta}{\gamma} + \frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \beta}{\gamma} = \gamma^2 + \alpha^2 + \beta^2$ $= (\gamma + \alpha + \beta)^2 - 2(\alpha \beta + \alpha \gamma + \beta \gamma)$ $= 0 - 2.3 p$ $= -6 p$ $\frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \gamma}{\beta} \cdot \frac{\alpha \beta}{\gamma} = \alpha \beta \gamma$ $= -q$ $\therefore \text{Re quired equation is } x^3 + \frac{9 p^2}{\gamma} x^2 - 6 px + q = 0$	1 1 1	Total = 4

Ques	Question 14 Trial HSC Examination- Mathematics Extension 2 2015				
Part	Solution	Marks	Comment		
(b) (ii)	For $\gamma = \alpha \beta$				
	$\frac{\alpha\beta}{\gamma} = 1$ is a root	1			
	$\therefore 1 + \frac{9p^2}{q} - 6p + q = 0$				
	$q + 9p^2 - 6pq + q^2 = 0$				
	$\therefore (3p-q)^2 + q = 0$	1	Total = 2		
(c)	P(x) = (x-2)(x-3)Q(x) + (ax+B) $P(2) = 9 P(3) = 4$	1			
	Therefore $2a + b = 9$				
	3a + b = 4	1			
	a = -5, b = 19	1			
			Total = 3		
(d)	Let $Z = cis\theta$				
	$Z^5 = cis5\theta$				
	$\therefore \cos 5\theta + i \sin 5\theta = 0$				
	$\theta = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$				
	i.e. = $0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{-4\pi}{5}, \frac{-2\pi}{5}$	1			
	$\therefore \text{ Roots are } Z_1 = 1, \qquad Z_2 = cis \frac{2\pi}{5}, \qquad Z_3 = cis \frac{4\pi}{5}$				
	$Z_4 = cis(-\frac{4\pi}{5}) \qquad Z_5 = cis(-\frac{2\pi}{5})$	1	Total = 2		
	$=\overline{Z}_3$ $=\overline{Z}_2$	1			

Question 14 Tria		Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution		Marks	Comment
(e) ii)	z^5-1			
	$=(z-z_1)(z-$	$(z-z_1)(z-z_5)(z-z_3)(z-z_4)$		
	$=(z-z_1)(z^2$	$-(z_2+z_2z_5)(z^2-(z_3+z_4)z+z_3z_4)$	1	
	$=(z-1)(z^2-$	$-2z\cos\frac{2\pi}{5}+1)(z^2-2z\cos\frac{4\pi}{5}+1)$	1	
		5		Total = 2

Quest	tion 15 Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution	Marks	Comment
(a) (i)	kv^2 $mg = g$	1	
(a) (ii)	$\ddot{x} = g - kv^2$	1	
(a) (iii)	When $\ddot{x} = 0$ $g = kv^2$	1	
	$\therefore v = \sqrt{\frac{g}{k}}$		
(a) (iv)	$\ddot{x}\frac{d}{dx}(\frac{1}{2}v^2) = g - kv^2$		
	$=\frac{d}{dv}(\frac{1}{2}v^2).\frac{dv}{dx}=g-kv^2$	1	
	$=v.\frac{dv}{dx}=g-kv^2$	1	
	$\therefore \frac{dv}{dx} = \frac{g - kv^2}{v}$	1	
	$\frac{dx}{dv} = \frac{v}{g - kv^2}$		
	$\therefore x = -\frac{1}{2k} \ln(g - kv^2) + c$	1	
	When $x = 0$ $v = 0$		
	$\therefore c = \frac{1}{2k} \ln g$		
	$\therefore x = -\frac{1}{2k}\ln(g - kv^2) + \frac{1}{2k}\ln g$		
	$=\frac{1}{2k}\ln(\frac{g}{g-kv^2})$	1	Total = 4

Ques	2015			
Part	Solution	Trial HSC Examination- Mathematics Extension 2	Marks	Comment
(b) (i)	$I_n = \int \sec$	n xdx		
	$=\int \sec \alpha$	$x^{n-2}x.\sec^2 x dx$		
	$= \tan x$.s	$\sec^{n-2} x - \int (n-2) \sec^{n-3} x \cdot \tan x \cdot \sec x \tan x dx$	1	
	$= \tan x$	$\sec^{n-2} x - (n-2) \int \sec^{n-2} x \cdot \tan^2 x dx$	1	
	$= \tan x s$	$ec^{n-2} x - (n-2) \int sec^{n-2} x \cdot (sec^2 x - 1) dx$		
	$= \tan x s$	$ec^{n-2}x - (n-2)\int (\sec^n x - \sec^{n-2} x)dx$		
	$= \tan x s$	$ee^{n-2}x - (n-2)I_n + (n-2)I_{n-2}$	1	
	$I_n + (n-2)$	$2)I_n = (n-1)I_n = \tan x \sec^{n-2} x + (n-2)I_{n-2}$		
	$I_n = \frac{1}{n-1}$	$\tan x \sec^{n-2} x + \frac{n-2}{n-1} I_{n-2}$	1	Total = 4
(b) (ii)	$\int_0^{\frac{\pi}{4}} \sec^4 x$	$dx = I_4 = \left[\frac{1}{3}\tan x \sec^2 x + \frac{2}{3}\int \sec^2 x\right]_0^{\frac{\pi}{4}}$		
	$= \left[\frac{1}{3}\tan x\right]$	$\left[\operatorname{sec}^{2} x + \frac{2}{3} \tan x\right]_{0}^{\frac{\pi}{4}}$		
	$= \left(\frac{1}{3}\tan\frac{2}{4}\right)$	$\frac{\pi}{4}\sec^2\frac{\pi}{4} + \frac{2}{3}\tan\frac{\pi}{4} - \left(\frac{1}{3}\tan 0\sec^2 0 + \frac{2}{3}\tan 0\right)$	1	
	$= \left(\frac{1}{3} \times 1 \times \right)$	$2+\frac{2}{3}\times 1$ $\bigg)-0$		
	$=\frac{4}{3}$		1	Total = 2

Ques	tion 15	Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution		Marks	Comment
(c)	If one roo	ot is $2+i$, another is $2-i$		
	$\therefore (z-(2-$	(z-(2-i))(z-3)=0	1	
	/	(z-2+i)(z-3)=0		
	$\left \left(z^2 - 4z + \right) \right $	-5)(z-3)=0		
	$\int z^3 - 7z^2 +$	-17z - 15 = 0	1	
				Total = 2

Ques	tion 16 Trial HSC Examination- Mathematics Extension 2	2015	
Part	Solution	Marks	Comment
(a) (i)	Coordinates of T are $(a\cos\theta, a\sin\theta)$ $x^2 + y^2 = a^2$		
	$\therefore 2x + 2y \frac{dy}{dx} = 0$	1	
	$\therefore \frac{dy}{dx} = -\frac{x}{y}$		
	$at T \frac{dy}{dx} = -\frac{\cos \theta}{\sin \theta}$	1	
	∴ Equation <i>TM</i>		
	$y - a\sin\theta = -\frac{\cos\theta}{\sin\theta}(x - a\cos\theta)$		
	$x\cos\theta + y\sin\theta = a$		
	When $y = 0$ $x = a \sec \theta$	1	
	\therefore Coordinates M are $(a \sec \theta, 0)$		Total = 3
(a) (ii)	On $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ when $x = a \sec \theta$		
	$a^2 \frac{\sec^2 \theta}{a^2} - \frac{y^2}{b^2} = 1$		
	$\frac{y^2}{b^2} = \sec^2 \theta - 1$		
	$\frac{y^2}{b^2} = \tan^2 \theta$		
	$\therefore y = b \tan \theta$		
	Coordinates of P are $(a \sec \theta, b \tan \theta)$	1	

(a)	_		
(a) iii)	$a\sec\beta = a\sec(\frac{\pi}{2} - \theta)$		
	$= a \cos ec$		
	$b\tan\beta = b\tan(\frac{\pi}{2} - \theta)$		
	$= b \cot \theta$	1	
	Gradient $PQ = \frac{b \cot \theta - b \tan \theta}{a \cos \cot \theta - a \sec \theta}$		
	$= \frac{b}{a} \left\{ \frac{\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}}{\frac{1}{\sin \theta} - \frac{1}{\cos \theta}} \right\}$		
	$\left(\frac{\cos^2\theta - \sin^2\theta}{\right)$		
	$= \frac{b}{a} \left\{ \frac{\sin \theta \cos \theta}{\cos \theta - \sin \theta} \right\}$		
	$\left[\sin \theta \cos \theta \right]$		
	$= \frac{b}{a} \left(\frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta - \sin \theta} \right)$		
	$=\frac{b}{a}(\cos\theta+\sin\theta)$	1	
	\therefore Equation PQ is		
	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) (x - a \sec \theta)$		
	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) x - b \cos \theta \sec \theta - b \sin \theta \sec \theta$		
	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) x - b - b \tan \theta$		
	$y = \frac{b}{a} (\cos \theta + \sin \theta) x - b$		
	$ay = b(\cos\theta + \sin\theta)x - ab$	1	Total = 3
(a)	All of the lines have the same y intercept.	1	
(iv)	i.e. $y = -b$		
	\therefore The fixed point is the intercept $(0,-b)$	1	Total = 2

(a) (v)	Equations of Asymptotes are $y = \pm \frac{b}{a}x$		
	Gradients of asymptotes are $m = \pm \frac{b}{a}$	1	
	As $\theta \to \frac{\pi}{2}$ the equation of $PQ \to ay = b(0+1)x - ab$		
	$\therefore \text{ Gradient of } PQ \rightarrow \frac{b}{a}$	1	
	$\therefore PQ$ approaches a line which is parallel to an asymptote.	1	Total = 2
(p)	$z = \cos\theta + i\sin\theta$		
i)	$\frac{1}{z} = z^{-1} = \cos \theta - i \sin \theta$		
	By De Moivres Theorem		
	$z^n = \cos n\theta + i\sin n\theta$		
	$z^{-n} = \cos n\theta - i\sin n\theta$		
	$z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$		
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	1	
ii)	$\left(z + \frac{1}{z}\right)^4 = z^4 + 4z^3 \frac{1}{z} + 6z^2 \frac{1}{z^2} + 4z \frac{1}{z^3} + \frac{1}{z^4}$	1	
	$= \left(z^4 + \frac{1}{z^4}\right) + 4\left(z^2 + \frac{1}{z^2}\right) + 6$		
	$(2\cos\theta)^4 = 2\cos 4\theta + 4(2\cos 2\theta) + 6$	1	
	$2^4 \cos^4 \theta = 2\cos 4\theta + 8\cos 2\theta + 6$		
	$\cos^4 \theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$	1	Total = 3